
International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 82
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Implementing Distributed Computing System
For Parallel Processing

Ms. Pallavi S. Shendekar, Mr. Vijay S. Gulhane, Mr. Amit R. Gadekar

Abstract— In this paper we are using threshold algorithm for performance improvement, this is the part of the Load balancing algorithm,
for implementing distributed computing system for parallel processing. Distributed computing is a form of parallel computing, but parallel
computing is most commonly used to describe program parts running concurrently on multiple processors in the same computer. Both
types of processing require dividing a program into parts that can run simultaneously, in distributed computing a program is dividing into
parts that run simultaneously on multiple computers communicating over a network. In order to ensure good overall performance, Load
balancing algorithm tries to balance the total system load by transparently transferring the workload from heavily loaded nodes to lightly
loaded nodes.

Index Terms— Database centric, distributed computing, distributed file system, Load balancing algorithm, parallel computing, Threshold

—————————— ——————————

1 INTRODUCTION
HE word distributed in terms such as "distributed sys-
tem", "distributed programming", and "distributed algo-
rithm” originally referred to computer networks where

individual computers were physically distributed within some
geographical area. The system may be characterized both as
"parallel" and "distributed"; the processors in a typical distrib-
uted system run concurrently in parallel. Distributed compu-
ting deals with hardware and software systems containing
more than one processing element or storage element, concur-
rent processes, or multiple programs, running under a loosely
or tightly controlled administration. In distributed computing
a program is divide into parts that run simultaneously on mul-
tiple computers communicating over a network. In parallel
computing, all processors may have access to a shared
memory to exchange information between processors whereas
in distributed computing, each processor has its own private
memory (distributed memory). Information is exchanged by
passing messages between the processors. The application of
several processors to a single task is an older idea with a rela-
tively large literature. The advent of very large-scale integrat-
ed technology has made testing the idea realistic, and the fact
that single processor systems are impending their maximum
performance level has made it crucial. We shall show, howev-
er, that victorious use of parallel processing imposes rigorous
performance necessities on algorithms, software, and architec-
ture.
 To estimate the speedup of a tightly coupled system on a
single application, we use a model of parallel computation

introduced by Ware. We define a as the fraction of work in the
application that can be processed in parallel. Then we make a
simplifying assumption of a two-state machine; that is, at any
instant either all processors are operating or only one proces-
sor is operating. Consider the condition user having 10000
document to process and each having large data in this case
project need to employee the system which will transfer pro-
cessing over the network system and save output on the serv-
er or main system. So the implemented system will aimed at
parallel processing of provided task.
 In Distributed Computing approach, it is followed to as-
sign a job to a processor if it is idle. The focus is now on how
to optimize re-sources to decrease the energy consumption by
volumes of computing equipments to deal with green and
sustainability issues. Various hardware and software architec-
tures are used for distributed computing. At a lower level, it is
necessary to interconnect multiple CPUs with some sort of
network, regardless of whether that network is printed onto a
circuit board or made up of loosely-coupled devices and ca-
bles. At a higher level, it is necessary to interconnect processes
running on those CPUs with some sort of communication sys-
tem.

2 LITERATURE SURVEY
Various algorithm and models have been proposed, mostly
heuristic in nature, as the optimal solution often requires fu-
ture knowledge and is computationally intensive. The most
widely approach for studying DLB algorithms is analytic
modeling and simulation. For analytic modeling, the comput-
er system is modeled as a queuing network with job arrivals
and their resource consumptions following certain probabilis-
tic patterns. Queuing network solution techniques are used to
compute performance measures [2],[7],[8],[9]. Due to limita-
tions of the solution techniques, simulation is often resorted to
for approximate solutions [4],[5]. Some of the-source-initiated
DLB algorithms are by Eager [6],[7],[8].
Various hardware and software architectures are used for dis-
tributed computing. At a lower level, it is necessary to inter-

T

————————————————
• Ms. Pallavi S. Shendekar is currently pursuing masters degree in

 information technology in Amravati University, India,
E-mail: pshendekar@yahoo.com.

• Mr. Vijay S. Gulhane is currently woringas a assistant professor in De-
partment of CSE at Sipna College Of Engineering Technology, Amravati. He
is working towards his Phd in Computer Science and Engineering from Am-
ravati University. E-mail: v_gulhane@rediffmail.com

• Mr. Amit R. Gadekar is currently woringas a assistant professor in De-
partment of CSE at DES’sCOET Dhamangaon [Rly], Amravati, India,

 E-mail:amit.gadekar1@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 83
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

connect multiple CPUs with some sort of network, regardless
of whether that network is printed onto a circuit board or
made up of loosely coupled devices and cables. At a higher
level it is necessary to interconnect processes running on those
CPUs with some sort of communication system.

2.1 Load Balancing
Load balancing is the processes of improving the performance
of a parallel and distributed system through are distribution of
load among the processors [3, 4]. It is a process of reassigning
the total load to the individual nodes of the collective system
to make resource utilization effective and to improve the re-
sponse time of the job, simultaneously removing a condition
in which some of the nodes are over loaded while some others
are under loaded. A load balancing algorithm which is dy-
namic in nature does not consider the previous state or behav-
ior of the system, that is, it depends on the present behavior of
the system. The important things to consider while developing
such algorithm are : estimation of load, comparison of load,
stability of different system, performance of system, interac-
tion between the nodes, nature of work to be transferred, se-
lecting of nodes and many other ones [5] . This load considered
can be in terms of CPU load, amount of memory used, delay
or Network load.

2.2 Goals of Load Balancing
As given in [5], the goals of load balancing are:

1. To improve the performance substantially
2. To have a backup plan in case the system fails even

partially
3. To maintain the system stability
4. To accommodate future modification in the system.

2.3 Types of Load Balancing Algorithms
All Depending on who initiated the process, load balancing
algorithms can be of three categories as given in [5]:

1. Sender Initiated: If the load balancing algorithm is
initialized by the sender

2. Receiver Initiated: If the load balancing algorithm is
initiated by the receiver

3. Symmetric: It is the combination of both sender initi-
ated and receiver initiated

Depending on the current state of the system, load balancing
algorithms can be divided into 2 categories as given in [5]:

1. Static: It does not depend on the current state of the
system. Prior knowledge of the system is needed

2. Dynamic: Decisions on load balancing are based on
current state of the system. No prior knowledge is
needed. So it is better than static approach.

3 SYSTEM ARCHITECTURE
As In the implemented architectures the main factors are the
designing the distributed system and parallel processing
through a specific problem domain. Here the problem domain
is known and well defined, the environment in which the sys-
tem run is also well defined. Basic aspect of distributed com-
puting architecture is the method of communicating and co-
ordinating work among concurrent processes. Through vari-

ous message passing protocols, processes may communicate
directly with one another, typically in a master/slave relation-
ship. Alternatively, “database centric" architecture can enable
distributed computing to be done without any form of direct
inter-process communication, by utilizing a shared database.

3.1 Working Modules
Fig.1. shows the basic block diagram of the system architec-

ture. Actual task processing needs a series of steps to be per-
formed. These series of processes are simultaneously executed
on different client machines. Basically here we are distributing
the no. of files on t the network through the shared database.

3.1.1 Master / Slave System
Parallel processing system built using server / client tech-

nology. Where master server act as a process manager system.
In this system whenever network initialize or the first system
user started in the network will check for active server in the
network if no server running found then it will become host or
master server and other were become slave system. This fea-
ture can be dynamic or static which means user can disable or
enable this feature.

3.1.2 Task Assigning
Once the user provides input task on master server then

master will analyze the task and divide it in to proper task and
create its task list for client. Once all clients get the task list to
process it will start processing. As implemented system will
work on shared data storage it will reduce network processing
and network traffic by removing data transfer processing.

Threshold algorithm

According to this algorithm, the processes are assigned imme-
diately upon creation to hosts. Hosts for new processes are
selected locally without sending remote messages. Each pro-
cessor keeps a private copy of the system’s load. The load of a
processor can characterize by one of the three levels: Under-
loaded, Medium and Overloaded. Two threshold parameters
tunder and tupper can be used to describe these levels.

Fig. 1. System Architecture.

 IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 84
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Under loaded - load < tunder
Medium - tunder ≤ load ≤ tupper
Overloaded - load > tupper

 Initially, all the processors are considered to be under

loaded. When the load state of a processor exceeds a load level
limit, then it sends messages regarding the new load state to
all remote processors, regularly updating them as to the actual
load state of the entire system. If the local state is not over-
loaded then the process is allocated locally. Otherwise, a re-
mote under loaded processor is selected, and if no such host
exists, the process is also allocated locally. Thresholds algo-
rithm have low inter process communication and a large
number of local process allocations. The later decreases the
overhead of remote process allocations and the overhead of
remote memory accesses, which leads to improvement in per-
formance. A disadvantage of the algorithm is that all processes
are allocated locally when all remote processors are overload-
ed. A load on one overloaded processor can be much higher
than on other overloaded processors, causing significant dis-
turbance in load balancing, and increasing the execution time
of an application.

3.1.3 Parallel Processing
After master distributes the task over the distributed net-

work all clients will process simultaneously and send
acknowledgement to the master server. Master server will also
process the task and at the same time will check for the client
processing status and monitor it on the screen.

3.1.4 Process Failure Detection System
The system will also manage failure of the client system at

run time. Consider a condition if any of the client get failed
due to any reason the remaining task should be processed by
other system in the network. Master server will take care of
this. It will continuously get acknowledgment from client time
to time after each task completion. Once any client’s connec-
tion get closed server will check work remain by specific client
and then again divide this task and pass it to other client and
client will process it.

3.1.5 Distributed File System
System sends data to client for processing but it will in-

crease system overhead. So in this paper data to processed will
kept on shared storage and accessed using distributed file sys-
tem so that network protocol processing can be reduced.The
main task is to start the server on specific port in listen mode
now server is ready to get the request from the client. Now
client can make request to the server by providing server ad-
dress and the server port detail. Client send connect request.
Server will get the connection request same as we get the ring
on mobile for connection. After this server can accept or reject
the connection and server accepting the request, a connection
link gets established between server and client. Now server
can send the data to the client and client get the data arrival
ACK, after this client can read the data .Same thing happened
with server and communication goes on. Finally any one of
both can close the connection.

4 REQUIREMENT ANALYSIS
Operating System : Windows XP
Development Tool : C# (.Net)
Database : SQL Server 2005

5 CONCLUSION
The implemented system is best for batch or mass execution.
This parallel processing distributed computing Model can re-
duce over-heads and it makes the proper utilization of multi-
ple systems rather than implementing supercomputing pro-
cessor. This system reduces the risk of failure as it can use
normal lower configuration PC system to complete the task
and even input task is not dependent on the single system. But
If not planned properly, a distributed system can decrease the
overall reliability of computations if the unavailability of a
node can cause disruption of the other nodes.

REFERENCES
[1] Gupta R., Chaube A.R., Singh S. (2011) International Journal of Advanced

Research in Computer Science and Software Engineering,.
[2] Wang Y. and Morris R. (1985) IEEE Trans. Computing, 34(3), 204-217.
[3] Stone H.S. (1978) IEEE Trans. Software Eng., 4(3).
[4] Stone H.S. (1977) IEEE Trans of Software Engineering, 3(1), 95-93.
[5] Sandeep Sharma, Sarabjit Singh, and Meenakshi Sharma, “Performance

Analysis of Load Balancing Algorithms”, academy of science, engineering
and technology, issue 38, February 2008, pp. 269-272.

[6] Miron Livny, Myron Melman (1982) The Computer Network Performance Sym-
posium, 47-55.

[7] Hsu C.H. and Liu J.W. (1986) The 6th International Confer-ence on Distribut-
ed Computing Systems, 216-223.

[8] Derek L. Eager, Edward D. Lazowska, John Zahorjan (1986) IEEE Transac-
tions on Software Engineering, 12(5), 662-675.

[9] Eager D.L., Lazowska E.D. and Zahorjan J. (1986) Perfor-mance Evaluation, 6(1),
53-68.

[10] Chow Y.C. and Kohler W. (1979) IEEE Transactions on Com-puters, 28, 334-361.

TABLE 1
PARAMETRIC COMPARISON OF LOAD BALANCING

ALGORITHMS

IJSER

http://www.ijser.org/

	1 Introduction
	2 LITERATURE SURVEY
	2.1 Load Balancing
	2.2 Goals of Load Balancing
	2.3 Types of Load Balancing Algorithms

	3 System Architecture
	3.1 Working Modules
	3.1.1 Master / Slave System
	3.1.2 Task Assigning
	3.1.3 Parallel Processing
	3.1.4 Process Failure Detection System
	3.1.5 Distributed File System

	4 Requirement Analysis
	5 Conclusion
	References

